Что важно знать о системе непосредственного или прямого впрыска топлива

Минусы

Теперь, собственно, о минусах, и для этого хочется заострить внимание на форсунках и ТНВД. Требования к этим элементам предъявляются весьма высокие, так как им необходимо безотказно работать в непростых условиях – высокое давление, высокие температуры, а это тянет за собой удорожание и технологические сложности

Требования к этим элементам предъявляются весьма высокие, так как им необходимо безотказно работать в непростых условиях – высокое давление, высокие температуры, а это тянет за собой удорожание и технологические сложности.

К тому же, на соплах форсунок образовываются загрязнения из продуктов горения топлива, поэтому в автомобили с двигателями, оснащёнными непосредственным впрыском, нужно заливать только высококачественный бензин – тоже проблема в наших реалиях. Масло также для них подходит только самое лучшее. В итоге содержание такого авто влетает в копеечку.

Эффект от присутствия воды в составе горючей смеси

Как уже было сказано, первоначально впрыск воды применялся для борьбы с детонацией. Однако, как правило, использовался раствор воды и метилового спирта в различных пропорциях. Опытным путем было установлено, что оптимальное соотношение составляет 50/50. Сам по себе раствор играет роль антидетонационной добавки, а форсирование двигателя изначально было побочным эффектом, о котором узнали не сразу. Кроме того, вода является антиоксидантом и препятствует образованию углеродистых отложений в камерах сгорания.

Что же происходит в камерах сгорания при впрыске водного раствора метанола?

  1. Вода обладает высокой теплоемкостью, благодаря чему существенно снижается температура в цилиндрах ДВС.
  2. Поскольку более холодный воздух сжать намного легче, энергии во время такта сжатия затрачивается значительно меньше, т. е. повышается КПД двигателя.
  3. Помимо этого, появляется возможность загнать в цилиндры больше воздуха, а вода, испаряясь, создает дополнительное давление, повышая степень сжатия.
  4. Жидкость попадает в цилиндры в распыленном состоянии, и мгновенно обволакивается частицами бензина, в результате рабочая смесь становится более однородной, хорошо заполняет все доступное пространство, и сгорает более равномерно. Это обеспечивает дополнительный рост КПД и снижает вероятность детонации. Таким образом, мощность ДВС возрастает примерно на 10%.

Что касается метилового спирта, процесс его сгорания протекает с меньшей скоростью, чем у бензина, посему рост давления в цилиндрах протекает более плавно, и максимальное значение достигается позже. В результате увеличивается крутящий момент и мощность.

Непосредственный впрыск

Появился не так давно, в 80 – 90 года прошлого века. Развитием активно занимались такие бренды как MERCEDES, VOLKSWAGEN, BMW и т.д.

Впрыск происходит по принципу фазированного типа, то есть каждая форсунка управляется отдельно. Зачастую они закреплены в рампу высокого давления (что-то наподобие COMMON RAIL), но бывают и отдельные элементы топливо подходит именно к каждой отдельно.

КАКОЕ ЗДЕСЬ ОТЛИЧИЕ – форсунки вкручиваются в сам блок двигателя и имеют непосредственное соприкосновение с камерой сгорания и воспламененной топливной смесью.

Воздух также подается через дроссель, далее по впускному коллектору – через клапана заходит в цилиндры мотора, после этого на цикле сжатия впрыскивается топливо, смешиваясь с воздухом и воспламеняясь от свечи. ТО есть смесь происходит непосредственно в двигателе, а не во впускном коллекторе, в этом то и кроется основная РАЗНИЦА!

ПЛЮСЫ. Топливная экономичность (может достигать до 10%), большая мощность (до 5%), лучшая экология.

МИНУСЫ. Нужно понимать форсунка находится рядом с воспламененной смесью, из этого вытекает:

  • Сложная конструкция
  • Сложное обслуживание
  • Дорогой ремонт и профилактика
  • Требование к качеству топлива (иначе банально забьется)

Как видите эффективно-технологично, но дорого обслуживать.

Система впрыска в наше время

Интересно теперь узнать, как обстоят дела с водяным впрыском в настоящее время. После 2005 года особого интереса к системе никто не проявлял. Но, как и ранее, требовалось лишь немного времени, чтобы кто-то вновь вспомнил про воду с метаном.

И это оказалась компания BMW. Причём они использовали впрыск не для увеличения мощности, как это происходило ранее, а для уменьшения уровня потребления топлива.

Первопроходцем стал автомобиль BMW M4, использующийся в качестве машины безопасности в рамках мотогонок серии MotoGP. На его двигателе использовалась обычная форсунка. Она подавала жидкость в коллектор. Но у баварцев был ещё и другой опытный мотор с 3 цилиндрами, турбиной и рабочим объёмом 1,5 литра. Здесь применялась более продвинутая технология.

Смешивание воды с горючим происходило за счёт работы насоса высокого давления производства Bosch, который включался в работу только тогда, когда обороты мотора превышали отметку в 4 тысячи единиц. Смесь топлива и воды с метаном, двигаясь через форсунку, проникала внутрь камеры сгорания. Это позволило повысить мощность от начальной 201 л.с. до 215 лошадок. Параллельно увеличилась устойчивость к детонации, что дало возможность использовать степень сжатия на 9,5 к 1, а уже 11,0 к 1. Инженеры отметили также общее улучшение отдачи при работе мотора на низких и средних оборотах.

Водяной бак на машине, оснащённый подогревом, имел объём 7 литров. В стандартных условиях расход смеси воды и спирта составлял 1,5 литра на каждые 100 километров пути. Потому водителю требовалось заправляться через 500 км.

Но инженеры BMW не были бы собой, если бы не придумали выход из ситуации. Они учли, что во время работы системы кондиционирования в автомобиле образуется достаточно большое количество конденсата. Эту жидкость они заставили сливаться в бак. Так удалось сэкономить около 8% топлива на 100 километров при движении автомобиля в условиях смешанного цикла. В теории такая система может идеально работать с гибридными приводами. Но в баварском автоконцерне пока на этот счёт ничего не говорят.

Двигатели, оснащённые системой водометанового впрыска, запускают в серийное производство. Причём автомобили с такими силовыми установками будут поставлять в Россию. Большинство плюсом появления подобных систем заключается в том, что моторы станут менее требовательными к качеству топлива. Если быть точнее, то к его октановому числу. То есть для BMW будет вполне достаточно заправлять автомобиль неплохим АИ95.

Прямой впрыск топлива – хорошо или плохо?

Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?

Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.

Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.

Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.

В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы.  Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.

Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:

Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:

Минусы

1. Очень сложная конструкция.

2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.

3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.

Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.

4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.

5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.

6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.

Помимо этого, в видео также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.

Плюсы

1. Экологичность.

2. Экономичность (правда, здесь нужно сделать оговорку: реальная экономия бензина доступна в условиях, близких к идеальным) – экономия 5-10%.

3. Немного более высокая мощность.

4. GDI при непосредственном попадании топлива в цилиндр охлаждает головку поршня.

5. Происходит лучшее смешение топливовоздушной смеси в цилиндрах.

6. Меньше детонация.

7. Требуется гораздо меньше топлива, смесь при определенных условиях работы мотора может обедняться до 30:1

8. Процесс работы двигателя точнее контролируется при помощи компьютера.

Топливный насос высокого давления VP-44.

Схема топливной системы с этим ТНВД представлена на рис. 23.

Сколько стоит ОСАГО на ваш автомобиль?
Поможем узнать стоимость и оформить полис без переплат с учетом скидок за КБМ! · Выбор лучшей цены. Скидка 50%. Официальный полис. Экономия времени. Узнайте цену страховки. Экономия до 3500 ₽.

Рис. 23. Система непосредственного впрыска дизельного двигателя с ТНВД VP-44:

Осо­бенностью приведенной системы является совмещенный блок управления как для ТНВД, так и для других систем двигателя. Блок управления состоит из двух частей, оконечные каскады питания электромагнитов которых расположены на корпусе ТНВД.

Рис. 24. Топливный насос высокого давления VP-44:

Топливо от топливоподкачивающего насоса поступает к насосной секции ТНВД и устройству опере­жения впрыски­вания.

Рис. 25. Гидравлическая схема ТНВД VP-44:

Для охлаждения топливоподкачивающего насоса и удаления из него воздуха топ­ливо проходит через привинченный к корпусу насоса клапан дросселирования перепуска 4.

Этот клапан осуществляет отвод топ­лива через отводной канал 5. В корпусе клапана находится нагруженный пружи­ной шарик, который позволяет выте­кать топливу только по достижении опре­деленной величины давления в канале.

Дроссель 6 очень малого диаметра, связанный с линией отвода, расположен в корпусе клапана параллельно основному каналу отвода топлива. Он обеспечивает автоматическое удаление воздуха из на­соса. Весь контур низкого давления ТНВД рассчитан на то, что в топливный бак через клапан дросселирования пере­пуска всегда перетекает некоторое коли­чество топлива.

Контур высокого давления. В контур высокого давления вхо­дят ТНВД, а также узел распределения и регулирования величины и момента на­чала подачи с использованием только од­ного элемента — электромагнитного кла­пана высокого давления.

Насосная секция ТНВД с радиальным движением плунжеров создает требуемое для впрыскивания давление величиной до 1000 кгс/см 2 .

Она приводится через вал и включает в себя (рис. 26):

— переднюю часть (головку) вала-распределителя 6.

Рис. 26. Примеры расположения плунжеров:

а – для четырех или шести цилиндров; b – для шести цилинд­ров; с – для четырех цилиндров; 1– кулачковая шайба; 2 – ролик; 3 – направляющие пазы приводного вала; 4 – башмак ролика; 5 – нагнетающий плунжер; 6 – вал-распределитель; 7 – камера высокого давления

Крутящий момент от приводного ва­ла передается через соединительную шайбу и шлицевое соединение непосред­ственно на вал-распределитель. Направляющие пазы 3 служат для того, чтобы через башмаки 4 и сидящие в них ролики 2 обеспечить работу нагнета­ющих плунжеров 5 сообразно внутрен­нему профилю кулачковой шайбы 1. Ко­личество кулачков на шайбе соответст­вует числу цилиндров двигателя.

В кор­пусе вала-распределителя нагнетающие плунжеры расположены радиально, что и дало название этому типу ТНВД. На вос­ходящем профиле кулачка плунжеры со­вместно выдавливают топливо в цент­ральную камеру высокого давления 7. В зависимости от числа цилиндров двига­теля и условий его применения сущест­вуют варианты ТНВД с двумя, тремя или четырьмя нагнетающими плунжерам.

Причина 2: вода для снижения расхода топлива

Да, и такое делают. Воду специально пускают в цилиндры двигателя. Якобы от этого реально уменьшается расход на 15-20 процентов. В итоге – начинаются подёргивания, а в режиме холостого хода на машину вообще страшно смотреть, и пожирает она в этот момент намного больше прежнего. Реальная экономия происходит только на хорошо прогретом двигателе, если редко переключать скорости.

Впрыск воды в карбюраторный двигатель

Существуют также несколько рекомендаций по этому поводу: вода должна быть обязательно дистиллированной, зажигание выставлено на раннее.

Впрыск воды: чепуха или нет

Практически 90 процентов автолюбителей боятся воды, как огня. Однако каково будет их удивление, если они узнают, что ещё в далёком 34-м году прошлого столетия патент на систему впрыска воды в двигатель был выдан КБ в СССР. Пока что речь не шла о снижении расхода топлива и повышении мощности (считается, что вода охлаждает горячий мотор, соответственно, повышается его мощность). Опыты ставились в целях борьбы с детонацией.

А вот уже в годы ВОВ на двигателях, использующих воду, летали наши «МиГи» и «Илы». Потом постепенно стали забывать об этом, технологии развивались, придумали реактивный двигатель. Тема воды в цилиндрах канула бы в лету, если бы не бедственное положение сельского хозяйства в послевоенные годы. Тут снова вспомнили, как использовать бензин с водой без ущерба для силовой установки.

На самом деле, вода должна быть смешана в одинаковом соотношении с метанолом. Иначе она будет только снижать детонацию и действовать, как антиоксидант, препятствующий отложению углеродных соединений.

Как удалить воду из топлива – присадки

Если воду добавлять в систему грамотно, она сумеет сыграть роль интеркулера. Испаряясь при высоких температурах, она увеличится в объёме.

Принцип работы K-jetronic

Нажатие на педаль акселератора активирует дроссельную заслонку, которая открывается. Воздух, поступающий через заслонку, воздействует на напорный диск воздушного расходомера. Диск при этом смещается, что обеспечивает движение плунжера дозатора-распределителя.

Под неизменным давлением, которое гарантируется наличием в системе регулятора давления, топливо подается к распределительному дозатору. Через кинематическую связь плунжера дозатора и диска воздушного расходомера осуществляется регулировка давления топливной смеси, поступающей в форсунки.

При постоянстве диаметра каналов впрыска форсунок, объем подаваемого топлива зависит от давления, развиваемого на входе в форсунки. Топливная дозировка реализована через синхронизированную работу воздушного расходомера и топливного дозатора и напрямую связана с режимом работы силового агрегата.

Увеличение оборотов двигателя в момент пуска и при работе в режиме холостого хода обеспечивается за счет подачи дополнительной порции воздуха, проходящего во впускной коллектор через специальный клапан (доп. подачи воздуха), и одновременно с воздухом подается и дополнительная порция топлива. За подачу топлива отвечает пусковая форсунка.

Пpавила собдюдения чистоты пpи pаботах с yстpойством впpыска топлива:

  1. Тщательно очищать бензином места соединений и их окpyжение.
  2. Cнятые детали складывать на чистyю подкладкy и накpывать. Использовать
    пленкy или бyмагy. Hе использовать тpяпки с очесами!!! Устанавливать только
    чистые детали.
  3. Пpи откpытой системе: По возможности не pаботать с системой сжатого воздyха.
    По возможности не пеpедвигать автомобиль.
    Правила техники безопасности при работах с устройством впрыска топлива
  4. Hе запyскать двигатель пpи незакpепленных пpоводах на аккyмyлятоpе.
  5. HИКОГДА не отключать аккyмyлятоp пpи pаботающем двигателе.
  6. Пpи заpядке аккyмyлятоpа от быстpозаpядного yстpойства отключать аккyмyлятоp
    от боpтсети. Hе использовать быстpозаpядное yстpойство для запyска двигателя.
  7. Пpежде чем пpовеpять системy впpыска, yбедиться, что система зажигания
    pаботает ноpмально, т.е. зажигание и свечи соответствyют заданным паpаметpам.
  8. Пpи темпеpатypе свыше +80 гpад.C (сyшка после окpаски) снимать электpонный
    блок yпpавления.
  9. Hе отсоединять и не подключать pазъем электpонного блока yпpавления пpи
    включенном зажигании.
  10. Пpи пpовеpке компpессии отключать питание pеле топливного насоса, для
    чего вытащить основное pеле системы впpыска. Pеле pасположено в pелейной
    коpобке слева в мотоpном отсеке.
  11. Cистема находится под давлением. Поэтомy пpи замене деталей сбpосить
    давление в системе. Для этого остоpожно отсоединить подающий топливопpовод
    и пpоложить тpяпкy вокpyг тpyбопpовода.
    Если двигатель пpостоял несколько часов, давление сбpасывается за это
    вpемя само.

Устройство и принцип работы (на примере электронной системы распределенного впрыска)

Устройство системы впрыска

В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.

Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.

Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.

Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.

Датчик положения коленвала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ – полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный “жизненно важный” в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.

Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).

Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.

Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.

Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)

Из всего перечесленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.

История впрыска

Прежде чем перейти к более подробно описанию и рассмотрению современных моделей и воздействия такого тюнинга на них, а также его преимуществ и прочего, нужно немного внимания уделить истории впрыска воды в двигатель. Все началось достаточно давно, еще примерно 110 лет назад, когда один венгерский ученый с фамилией Бычнки решил начать тестирование данного процесса. Единственное, что ему мешало, это примитивность силовых агрегатов, существующих на тот момент. Кроме того, в то время данная тема так и не получила серьезного развития. Вплотную заниматься ею стали лишь спустя 30-40 лет. Продолжением работ в этом направлении занялся английский ученый Хопкинсон. Им были проведены определенные исследования впрыска воды в двигатель на тех моделях, которые в то время считались стандартными.

Стоит отметить, что его исследования привели к успеху. Хотя справедливо будет сказать, что в тот момент основная задача состояла в уменьшении детонации топлива, а вовсе не в увеличении мощности самого двигателя. Однако все это были лишь попытки. Человеком же, которые внес решающий вклад в развитие такой темы, как впрыск воды в двигатель, стал Гарри Рикардо. Хотя и здесь можно сказать, что в то время впрыск использовался больше в двигателях для летной техники, так как это были 40-е года 20 века, когда, как известно, повсюду шли военные конфликты. Однако позже появились реактивные двигатели и надобность в таком типе впрыска вовсе отпала, так как все силовые агрегаты были заменены на новые.

Последующий этап развития впрыска воды в двигатель пришел уже на 80-е годы. Именно к этому времени владельца транспортных средств вспомнили о его существовании и решили применять его для улучшения характеристик своих авто.

С насосом распределенного типа

ТНВД распределенного впрыска стала следующим этапом в развитии систем питания дизельных агрегатов.

Изначально такая система была тоже механической и отличалась от описанной выше лишь конструкцией насоса. Но со временем в ее устройство добавили систему электронного управления, которая улучшила процесс регулировки впрыска, что позитивно сказалось на показателях экономичности мотора. Определенный период такая система вписывалась в стандарты экологичности.

Особенность этого типа впрыска сводилась к тому, что конструкторы отказались от использования многосекционной конструкции насоса. В ТНВД начала использоваться всего одна плунжерная пара, обслуживающая все имеющиеся форсунки, количество которых варьируется от 2 до 6. Для обеспечения подачи топлива на все форсунки, плунжер совершает не только поступательные движения, но еще и вращательные, которые и обеспечивают распределение дизтоплива.

ТНВД с насосом распределенного типа

Позже эта система добавилась новым типом насоса – роторным, у которого устанавливаются несколько плунжеров, но распределенная подача осталась. Это позволило увеличить создаваемое насосом давление.

К положительным качествам таких систем относились:

  • Малые габаритные размеры и масса насоса;
  • Лучшие показатели по топливной экономичности;
  • Использование электронного управления повысило показатели системы.

К недостаткам же системы с насосом распределенного типа относятся:

  • Небольшой ресурс плунжерной пары;
  • Смазка составных элементов осуществляется топливом;
  • Многофункциональность насоса (помимо создания давления он еще управляется подачей и моментом впрыска);
  • При отказе насоса система прекращала работать;
  • Чувствительность к завоздушиванию;
  • Зависимость давления от оборотов двигателя.

Широкое распространение такой тип впрыска получил на легковых авто и небольшом коммерческом транспорте.

Об устройстве и комплектации двигателя «Д-120»

Дизель «Д120» состоит из следующих составных частей: кривошипно-шатунного механизма, уравновешивающего механизма и механизма газораспределения, декомпрессора, системы питания, смазки и охлаждения, электрооборудования.

Основная часть мотора – картер. В расточках картера размещены два цилиндра, расположенные вертикально, в ряд, которые уплотнены прокладками в нижней части. На заднем торце картера находится картер маховика, которым силовой агрегат соединяется с коробкой переключения передач. На переднем торце двигателя – передний лист, с установленными на нём топливным насосом и крышкой распределительных шестерён. Нижняя часть картера дизеля закрыта масляным поддоном.

Кривошипно-шатунный механизм создаёт вращение коленчатого вала, при помощи системы газораспределения, при преобразовании движений поршней в энергию. Регулятор частоты вращения коленчатого вала двигателя – центробежный, всережимный с корректором подачи топлива. При работающем двигателе на поршни воздействует давление газов, преобразованных от сгорания дизтоплива. Через шатун усилие передаётся коленчатому валу, который вращается от этих усилий. Маховик уменьшает дисбаланс дизеля и передаёт через муфту сцепления крутящий момент к трансмиссии трактора.

В осевом направлении коленчатый вал зафиксирован полукольцами, которые установлены в расточках средней перегородки картера и в крышках коренных подшипников. На поршни установлено по три компрессионных кольца. Маслосъёмное кольцо на поршне одно, комбинированное. Камера сгорания расположена в днище поршня. Механизм уравновешивания выравнивает момент от инерционных сил при работе дизельного двигателя. Состоит этот механизм из дополнительного валика с грузами-противовесами и из специальных приливов на переднем шкиве и маховике дизеля.

Валик вращается с одинаковой скоростью с коленчатым валом, но в обратном направлении. Привод осуществляется от ведущей шестерни газораспределения через шестерни промежуточную и ведомую. Работа механизма газораспределения должна быть синхронной с подачей дизтоплива, и шестерни устанавливаются строго по меткам, на шестернях.

Декомпрессор нужен для лёгкого пуска дизеля. Кроме того, декомпрессор в экстренных ситуациях используются для остановки мотора. Состоит декомпрессор из рейки, из двух валиков и двух рычагов, которые шарнирно соединены с рейкой. Рычаги соединены с валиками жёстко, и входят концами в толкатели впускных клапанов. Перемещение рейки поворачивает рычаги с валиками, и поднимаются толкатели, приоткрывающие впускные клапаны с помощью штанг и коромысел. В выключенном состоянии валики толкатели не поднимают.

Способ смесеобразования – неразделённая камера сгорания (камера в поршне), с непосредственным впрыском дизельного топлива. Форсунки на «Д-12О» установлены закрытого типа, с многоструйным распылителем. Марка – «16.1112010», бесштифтовые. Фильтр грубой очистки дизтоплива – сетчатый, со сменным фильтр-патроном. Фильтр тонкой очистки – со сменным элементом из фильтрованной бумаги. Воздухо-очиститель – инерционно-масляный.

Система смазки дизеля «Д-12О» является комбинированной: под давлением от маслонасоса и разбрызгиванием, с дальнейшим охлаждением, в масляном радиаторе. Масляный насос установлен шестерённый, с приводом от коленчатого вала мотора. Для смазки используется масло моторное «М-10Г-2» и «М-10-В2» — в летний период, «М-8Г2» и «М8-В2» – в зимний.

Система охлаждения данного двигателя воздушная, принудительная, с направляющим аппаратом, который установлен входе потока охлаждающего воздуха; с осевым вентилятором, имеющим привод от ременной передачи. Регулирование теплового состояния дизеля – принудительное, сезонное, с помощью включения / отключения масляного радиатора, а также с помощью дроссельного диска вентилятора, который установлен перед направляющим аппаратом. Контроль теплового состояния осуществляется с помощью контрольной лампы, и присутствует указатель температуры масла в смазочной системе.

Топливный насос установлен одноплунжерный распределительного типа «5З.11.11.ОО4», либо двухплунжерный, типа «2УТНМ». Дизельный двигатель «Д-120» оборудован счётчиком моточасов «СЧ-102В».

Как работает система распределенной подачи ТС

Работа основных элементов системы – форсунок напрямую зависит от центра управления – управляющего блока, состоящего из бортового компьютера. Основной функцией управляющего блока является прием электрических сигналов, поступающих от входных датчиков, с последующей обработкой и преобразованием в управляющие сигналы, которые передаются на электромагнитные клапаны топливных форсунок и механизмы исполнения.

Помимо основных функций, блок управления выполняет и дополнительные задачи – проводит своевременную диагностику топливной системы на предмет выявления любых неполадок или поломок в ее работе.

При обнаружении неполадок блок управления сообщает о них водителю через контрольные лампы на приборной панели – Check engine, Check. Информация о более сложных поломках заносится в блок памяти для дальнейшего использования при повторной диагностике.

Расчет нужного количества топлива, происходит на основании данных полученных от температурных датчиков (температуры двигателя и поступающего воздуха), расхода воздуха, подсчета скорости вращения коленвала, угла открытия заслонки и т.д.

Произведя необходимые расчеты на основании полученных данных, бортовой компьютер посылает сигналы в виде электрических импульсов на форсунки для их открытия. Принимая сигналы, форсунки открывают клапаны, через которые топливо под высоким давлением поступает в топливный коллектор.

Почему дизельному двигателю нужен регулятор?

У дизельного двигателя не существует положения управляющей рейки, которое бы позволило дизельному двигателю точно поддерживать свои обороты без помощи регулятора. На холостом ходу, к примеру, без регулятора числа оборотов, обороты двигателя будут либо падать, пока двигатель не остановится, либо будут продолжать увеличиваться, что, в конце концов, приведет к саморазрушению двигателя.

Последняя возможность обязана тому, что дизель работает с избытком воздуха, что означает отсутствие эффективного дросселирования поступающей в двигатель смеси при возрастании его оборотов.

К примеру, если холодный двигатель был заведен и остался работать на холостом ходу, тогда как продолжает впрыскиваться начальное количество топлива, то характерное трение вскоре начнет снижаться. То же самое относится к нагрузке двигателя от приводимых от него агрегатов, таких как генератор, воздушный компрессор, ТНВД и т.д. Это означает, что если положение управляющей реики осталось неизменным и рейка не втягивалась для уменьшения количества подаваемого топлива (как сделал бы регулятор), то обороты двигателя будут возрастать все больше и больше (из-за указанного выше падения трения), пока они не достигнут точки саморазрушения. Другими словами, является обязательным, чтобы дизель был оснащен регулятором числа оборотов. В настоящее время для рядных ТНВД используются либо механические (центробежные) регуляторы либо система электронного управления дизельным двигателем (EDC).

Пневматические регуляторы, управляемые давлением впускного коллектора устанавливались ранее на небольшие ТНВД. От них пришлось отказаться в результате возросших требований к точности регулирования и к работе регулятора.

Как избежать возможных проблем с системой прямого или непосредственного впрыска топлива

Однако, даже если вы купили новый автомобиль, и заправляете его только качественным и высокооктановым бензином, то чтобы в будущем избежать возможных проблем с системой прямого впрыска топлива, необходимо регулярно, каждые 50 000 километров пробега, проводить её профилактическое обслуживание, которое стоит недёшево.

Нет, я не призываю вас отказываться от покупки автомобиля, двигатель которого оснащён системой прямого впрыска топлива. Тем более, что этой системой сейчас оснащаются практически все автомобили. Я просто хочу вас предупредить, что если вы уже купили или собираетесь купить такой автомобиль, то не забывайте о своевременном профилактическом обслуживании.

Особенно это касается подержанных автомобилей, профилактическое обслуживание которых я рекомендую сделать сразу после покупки, что в будущем сохранит ваши нервы, время и деньги.

Понравилась публикация? Поделись!

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
СТО БрикетСервис
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector