Что такое двигатель на водородном топливе, как собрать его своими руками

Рекомендации по изготовлению

Зная технологию получения водородного топлива и обладая определенными навыками, в домашних условиях можно сделать водородный генератор своими руками. Сегодня существует несколько работоспособных схем, позволяющих создать такую установку. Причем в отличие от классического устройства, в самодельном электроды помещаются не в емкость с водой, а сама жидкость поступает в зазоры между пластинами. Перед началом проведения работ по изготовлению водородной установки своими руками следует внимательно изучить чертежи.

Выбор материалов

Чаще всего домашние мастера сталкиваются с проблемой выбора электродов. С созданием топливной ячейки ситуация более простая и сегодня существует два основных типа генераторов водорода — «мокрый» и «сухой». Для создания первого можно использовать любой контейнер, имеющий достаточный запас прочности и газонепроницаемости. Оптимальным выбором можно считать корпус от аккумулятора старого образца для легковой машины.

Лучшими электродами будут пластины (трубки) из нержавейки. В принципе можно использовать и черный металл, но он быстро подвергается коррозии и такие электроды требуют частой замены. Совершенно иначе дело обстоит при использовании высокоуглеродистых сплавов, легированных хромом. Примером такого материала является нержавейка марки 316L.

При использовании трубок, они должны подбираться так, чтобы при установке одного элемента в другой между ними был обеспечен зазор величиной не более одного миллиметра

Не менее важной деталью генератора водорода для автомобиля является ШИМ-генератор. Именно благодаря правильно собранной электросхеме можно регулировать частоту тока, а без этого добывать водород не представляется возможным. Для создания водного затвора (бабблера) можно использовать любую емкость, обладающую достаточным показателем герметичности

При этом ее желательно оснастить крышкой, которая плотно закрывается, но при возгорании ННО внутри сразу будет сорвана. Для предотвращения возврата газа Брауна в топливную ячейку, рекомендуется установить отсекатель между водным затвором и электролизером

Для создания водного затвора (бабблера) можно использовать любую емкость, обладающую достаточным показателем герметичности. При этом ее желательно оснастить крышкой, которая плотно закрывается, но при возгорании ННО внутри сразу будет сорвана. Для предотвращения возврата газа Брауна в топливную ячейку, рекомендуется установить отсекатель между водным затвором и электролизером.

Сборка устройства

Для создания кислородного генератора лучше выбрать «сухую» топливную ячейку, а электроды стоит изготовить из нержавейки. Именно она пользуется наибольшей популярностью среди домашних мастеров

Также важно придерживаться определенной последовательности действий:

По размеру генератора необходимо нарезать пластины из органического стекла или органита, которые будут использоваться в качестве боковых стенок. Оптимальными размерами для топливной ячейки являются 150х150 или 250х250 мм.
В корпусных деталях необходимо просверлить отверстия для установки штуцеров для жидкости, одно для ННО и 4 крепежных.
Из стали марки 316L изготавливаются электроды, размер которых должен быть на 10−20 мм меньше в сравнении с боковыми стенками. В одном из углов каждого электрода необходимо сделать контактную площадку для соединения их в группы, а также подключения к источнику питания.
Чтобы увеличить количество получаемого в электрогенераторе газа Брауна, электроды следует обработать наждачной бумагой с каждой стороны.
В пластинах сверлятся отверстия диаметром 6 мм (подача воды) и 8−10 мм (отвод газа). При расчете мест сверления необходимо учитывать месторасположение патрубков.
Сначала в пластины из оргстекла монтируются штуцера и хорошо герметизируются.
В одну из корпусных деталей устанавливаются шпильки, а затем укладываются электроды.
Электродные пластины отделяются от боковых стенок прокладками из паронита либо силикона. Аналогичным образом необходимо изолировать и сами электроды.
После установки последнего электрода монтируются уплотнительные кольца и генератор закрывается второй стенкой. Сама конструкция скрепляется с помощью гаек с шайбами

В этот момент крайне важно следить за равномерностью затяжки крепежных элементов и не допустить перекосов.
Топливная ячейка подключается к емкости с жидкостью и водному затвору.
После соединения групп электродов в соответствии с их полюсом, генератор подключается к ШИМ-генератору.

Водородный двигатель: типы, устройство,принцип работы

ТИПЫ ВОДОРОДНЫХ ДВИГАТЕЛЕЙ

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте. Топливный элемент на водороде фактически представляет собой «батарейку»

Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной).  Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода.  В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду,  при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. 

Откуда появились водородные ДВС

В 70-х в мире разразился энергетический кризис,
что подвигло ученых заняться поиском альтернативы бензину. Одним из первых на
водороде стал ездить внедорожник Тойота, но в конце 90-х он так и не пошел в
серию. Исследования в этой области продолжались. Кроме Тойота успехов добились
Хендай и Хонда.

Но энергетический кризис закончился, а вместе с
ним пропал и интерес к моторам, работающим на альтернативном топливе

Сейчас
проблема снова стала актуальной, экологи опять заставляют обратить на нее
внимание. Проводить практические эксперименты с водородом подталкивает
повышение цен на топливо

Активнее всего к созданию двигателей на водороде подходят
BMW, Honda и Ford. В 2016 году был выпущен первый поезд, двигатель которого
работает на H2.

Плюсы и минусы

У вида горючего есть сторонники, которые уверены, что за водородом будущее. Но есть и скептики, которые находят больше минусов, чем плюсов. Взвесим все “за” и “против”.

Плюсы водородного топлива.

  • Наверное, самым главным плюсом является его экологичность. При эксплуатации других марок топлива образуются вредные выхлопы, загрязняющие воздух. У углеводорода с ними проблем нет. Все, что остается после внутреннего сгорания – это водяной пар. Безусловно, при расходовании сгорают разные масла, но их токсичный выброс в разы меньше по сравнению с бензиновым.  
  • Простота конструкции и ее использование. Для мотора не требуется сложных систем подачи горючего, которые пока есть в современных авто и которые не отличаются надежностью, а порой бывают даже опасны.  У электродвигателей с искровым зажиганием, которые работают на водородном изотопе, имеется возможность качественно регулировать топливоздушную смесь. Этот газ также способен сделать маленькие двигатели достаточно мощными, а авто высокоскоростными.
  • Водородное топливо делает движение автомобиля полностью бесшумным.
  • Нельзя не игнорировать тот факт, что КПД электродвигателя, работающего на углеводороде, намного выше, чем у бензинового двигателя внутреннего сгорания.
  • И еще одно “за”. Этот элемент самый распространенный во Вселенной занимающий более 86% атомов, и в отличие от запасов нефти, он никогда не закончится и на нем не придется экономить. 

Что же говорят скептики, отрицая возможность его применения?

  • На сегодняшний день способ получения в промышленных объемах достаточно дорогой и сложный. Сам по себе в чистом виде изотоп не существует, он летуч и для его добычи необходимы определенные технологии, которые требуют денежных вложений и определенных затрат. 
  • Сложности при хранении и транспортировке газа. До сих пор не разработаны стандарты хранения и перевозки, так как никаких значимых экспериментов не проводилось. Это вновь потребует денежных инвестиций.
  • Несмотря на более простую систему углеводородного двигателя относительного бензинового, она пока не совершенна. Под ее установку требуются автомобили больших габаритов, что делает выпуск транспортных средств более дорогим. Безусловно, эту проблему можно решить, если проводить дополнительные разработки и эксперименты, но пока ими мало кто занимается.  
  • Сложности перевода производства на добычу и переработку гидрогена. Дело в том, что для его добычи требуются совершенно другие машины и механизмы, отличные от тех, которые используются для добычи нефти. Не все предприятия готовы потратить деньги на модернизацию своего производства и переход на новейшие стандарты. К тому же из-за малоизученности элемента промышленные гиганты не готовы рисковать, не зная, как отреагируют потребители.
  • Недоверие покупателей. Еще один фактор, сдерживающий полное внедрение газа. Пока еще общество скептически относится к новшеству, предпочитая проверенные средства заправки. Из-за этого в мире небольшой процент АЗС, полностью готовых обеспечивать этим видом горючего. 

Как видим, пока обоснованных минусов больше. Отсутствие стандартов добычи, переработки, хранения водородного изотопа, а также приемлемых конструкторских решений ведет к недоверию общества, которое пока не готово пересаживаться на новые водородные авто, а промышленность не видит целесообразности проводить реконструкцию производства из-за низкого спроса.

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Во времена Второй мировой войны, когда возникли сложности с поставками нефтяного топлива, техник из СССР Борис Исаакович Шелищ, который был родом из Украины, заложил основы российской водородной энергетики. Он также предложил использовать смесь водорода и воздуха в качестве горючего для ДВС, после чего его идеи быстро нашли практическое применение. В результате появилось около полутысячи двигателей, работавших на водороде.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

О перспективе

Сможет ли водород в будущем стать альтернативой ископаемому топливу? Интересные подробности сообщает агентство euronews.

Замена бензина и дизельного топлива водородом позволит снизить выбросы CO2. К сожалению, сегодня в Европе лишь несколько сотен автомобилей ездят на водороде, отмечает агентство. Отличный пример показывает Дания. Это первая в мире страна с развитой инфраструктурой с десятком заправочных станций по всей территории.

Существует амбициозный проект – в ближайшие годы построить в Европе полсотни водородных заправок. А число машин с водородными топливными элементами должно удвоиться.

ТЭ имеют целый ряд преимуществ перед традиционными ДВС. Прежде всего, энергетическая установка работает мягко, ровно, бесшумно. А это комфорт! При этом водитель сохраняет все привычки, выработанные за рулем автомобиля с ДВС. Когда нужно, заезжает на заправку и через 3–5 минут продолжает путь, проезжая без остановки порядка 600 км.

Дело за малым – наладить производство водорода с помощью возобновляемых источников энергии. И такая технология уже существует. На заправочной станции в английском Шеффилде имеется установка для элекролиза. Ветряные генераторы вырабатывают энергию, и она тут же используется для получения водорода из воды методом электролиза.

Водород планируется получать за счет развития зеленой энергетики

И все же большая часть водорода сегодня добывается из ископаемого топлива. И научные исследования направлены на то, чтобы повысить эффективность электролизеров. И тогда водородное топливо можно получать «на месте», отказавшись от его доставки в автоцистернах.

Пока не решена проблема высокой стоимости – как топлива, так и самих водородных автомобилей. Однако эксперты надеются, что к 2025 году цены на машины с ТЭ и на водород будут сопоставимы с аналогичными показателями бензиновых и дизельных автомобилей.

И еще, любопытно: станут ли машины, работающие на водороде, конкурентами электромобилей, работающих от аккумулятора? Специалисты считают, что места на дорогах хватит всем экологически чистым автомобилям. Будем надеяться, что через десяток лет на европейских дорогах появятся сотни тысяч машин, работающих на водороде.

Использованы статьи автора, Александра Раменского и Геннадия Дунина, опубликованные в «АБС-авто»

Юрий Буцкий

Как это работает?

Схема работы авто на водороде выглядит следующим образом:

  • поршень перемещается сверху вниз, открывая при этом клапан выпуска;
  • давление в камере сгорания становится равным атмосферному;
  • при достижении поршнем нижней точки происходит герметизация камеры;
  • клапан выпуска закрывается, а через клапаны подачи топлива осуществляется впрыск топливной смеси (гремучего газа);
  • в процессе сгорания смеси давления в камере возрастает; этой силы достаточно, чтобы открыть установленные в ГБЦ обратные клапана и осуществить выброс продуктов горения;
  • давление снижается, что приводит к закрытию обратных клапанов и герметизации камеры сгорания;
  • действие созданного давления способствует перемещению поршня и его возврату в первоначальную точку;
  • как только поршень становится в верхней позиции, снова открываются клапана впуска и так далее.

Как следствие, принцип действия водородного мотора ничем не отличается от обычного ДВС. Разница лишь в применяемом топливе.

Что касается получения необходимого газа, то это может происходить несколькими путями. Один из них — посредством электролиза воды.

Описанная выше схема является простейшей, но она работает. При этом водород можно использовать и в обычном ДВС. Преимущество такой подмены — быстрое сгорание топлива и рост общей производительности автомобиля.

Пары жидкости рекомендуется добавлять в силовой узел уже к имеющемуся водородному топливу. После работы на водороде двигатель реально очищается от нагара и разных «напылений». Но есть и отрицательная сторона. Вместе с нагаром водород смывает и имеющуюся масляную пленку. Как следствие, может снизиться ресурс силового узла.

Чтобы перевести обычный двигатель на водородное топливо, стоит произвести переделку в машине выхлопной и клапанной системы. Кроме этого, необходимо заменить поршни, которые должны иметь керамическое покрытие. Если же сделать подобные переделки, то проблем со смазкой или ржавчиной точно не будет.

Первый автомобиль с водородным двигателем

Поскольку речь пойдет сегодня о том, как использовать водородные двигатели на авто, о перспективах их появления на конвейерах автозаводов в принципе, то просто нельзя не вспомнить о том, что такой двигатель появился на 75 лет раньше бензинового силового агрегата. Это было 1806 году, а само изобретение приписывают франко-швейцарскому изобретателю де Ривазу. Как известно, бензиновый двигатель был изобретен только к концу 19 века.

Водородный двигатель призван решить не только экономическую проблему постоянного подорожания нефтепродуктов. В конце концов, нефть когда-то закончится и в тот момент будет поздно думать о ее альтернативе. С другой стороны, ученые ищут замену обычному топливу для автомобильных двигателей в буквальном смысле, чтобы спасти цивилизацию. Атмосфера планеты уже перенасыщена оксидами азота, оксидами серы, углекислым газом. А с ростом количества частного автомобильного транспорта даже в развивающихся странах, ситуация с экологическими показателями атмосферы планеты близка к критической.

А все-таки попробовать можно – водородный генератор для автомобиля

Несмотря на такой безрадостный вывод о водородной энергетике в промышленном масштабе, можно попробовать использовать вариант получения, так называемого газа Брауна непосредственно на автомобиле. По сути, это тот же самый водород, результат электролиза воды, только проведенного на машине. Под капотом монтируется специальная установка, генератор водорода, питание на которую подается от бортовой сети.

Понятно, что при прочих равных условиях мощность, расходуемая на движение, уменьшится, часть энергии будет дополнительно тратиться на производство газа. Но результаты, полученные в ходе многочисленных испытаний, показывают, что подобная установка позволяет экономить до тридцати процентов бензина.

Как устроен такой генератор, позволяет понять рисунок. Пример изготовления простейшего его варианта показан на видео

https://youtube.com/watch?v=_EgY9XtGZmM

и

https://youtube.com/watch?v=rUUnvFrox40

Как реально подобная установка располагается под капотом, видно на фото.

Вот такой небольшой генератор газа Брауна позволит любой автомобиль сделать немного ближе к творениям концерна Toyota или BMW, получая некоторую экономию бензина.

Водород считают горючим будущего, но так ли это? Для его повсеместного использования существует множество проблем, и хотя ведущими автопроизводителями, такими например, как Toyota, в этом направлении прилагаются значительные усилия, есть определенные сомнения, что в ближайшем времени водород сможет заменить бензин. Но есть мнение, что если использовать простейший генератор газа Брауна, то вполне возможно добиться экономии бензина на своем автомобиле, не дожидаясь прихода водородной энергетики.

Мне нравится4Не нравится1

Преимущества и недостатки

С практической точки зрения все плюсы и минусы водородных силовых агрегатов в условиях современного автомобилестроения очевидны и обусловлены их техническими характеристиками. К неоспоримым преимуществам относятся следующие факторы:

  • абсолютно бесшумная работа;
  • высокие показатели экологической чистоты;
  • очень достойный коэффициент полезного действия;
  • меньшее количество токсичных выбросов в атмосферу;
  • гарантированно высокая мощность и производительность;
  • конструктивная простота и отсутствие ненадёжных систем топливной подачи.

Среди значимых недостатков можно выделить сложность и дороговизну получения топлива в промышленных объёмах, отсутствие регламента хранения и транспортирования. Вес машины естественным образом заметно увеличится, что обусловлено необходимостью установки на транспортное средство тяжёлых токовых преобразователей и мощных аккумуляторных батарей.

Специалисты отмечают также высокую опасность использования водорода, связанную с риском появления взрыво- и пожароопасной ситуации при взаимодействии с разогретым выпускным коллектором и моторными маслами. Сегодня цена одного килограмма водорода составляет порядка 8-9 американских долларов, поэтому при расходе 1,2-1,3 кг на 100 км, средняя стоимость такой поездки вполне сопоставима с эксплуатацией традиционного бензинового автомобиля.

Как работает водородный двигатель?

Машины на водородном двигателе можно разделить на три группы:

  • авто с двумя энергоносителями, обладающее высокоэкономичным двигателем, который может работать как на чистом водороде, так и на смеси его с бензином. КПД такого двигателя 90–95%, тогда как дизельного — 50%, а бензинового — 35%. Такие автомобили соответствуют стандарту «Евро-4»;
  • водородный автомобиль со встроенным электродвигателем, который питает основной топливный элемент, установленный на борту. Сейчас созданы авто с КПД выше 75%;
  • обычные автомобили, работающие на смеси или чистом водороде. Выхлоп намного чище, а КПД «подрастёт» примерно на 20%.

Как работает водородный двигатель? Выделяют 2 типа силовых установок по принципу работы:

  • водородные двигатели внутреннего сгорания. Используется роторный двигатель;
  • силовые установки на топливных водородных элементах — их принцип работы построен на химической реакции. Корпус элемента имеет мембрану, проводящую только протоны и разделяющую камеры с электродами — анодом и катодом. В камеру анода подводят водород, в камеру катода подводят кислород. Электроды покрывают слоем катализатора, например, это платина. Молекулярный водород теряет электроны под воздействием катализатора. Протоны через мембрану проводятся к катоду, под воздействием катализатора в результате соединения с электронами образуется вода. Из камеры анода электроны уходят в электрическую цепь, которая подсоединена к двигателю. Так образуется ток для питания мотора.

Достоинства водородного двигателя:

  • продукт горения водорода — вода. А значит, это самое экологически чистое топливо;
  • мощность, приёмистость и иные показатели двигателя выше, чем у стандартного — электроэнергия обеспечивает их сполна;
  • низкий уровень шума;
  • простота обслуживания — не нужна сложная трансмиссия, а трущихся деталей меньше;
  • низкая себестоимость эксплуатации транспорта;
  • меньший расход топлива и большая скорость заправки;
  • более высокий запас хода;
  • водород имеет большой потенциал в качестве альтернативного вида топлива, так как он может быть получен из различных источников, в том числе солнечной энергии или ветра;
  • основное сырьё — вода — бесплатное.

Недостатки водородного двигателя:

  • Использование топливных элементов в обычном двигателе чревато пожаром или взрывом из-за его устройства.
  • Стоимость их также весьма высока.
  • Вес автомобиля увеличивается в результате использования преобразователей тока и мощных аккумуляторов.
  • Процесс получения из воды водорода пока тоже недёшев, как и транспортировка нового топлива.
  • Прогнозируются и экологические проблемы — увеличение в атмосфере количества водорода может пагубно сказаться на озоновом слое Земли.
  • Производство аккумуляторов – также вредный для окружающей среды процесс.
  • Одной из проблем транспортных средств на водороде является высокая стоимость платины, необходимой для химической реакции в двигателе.
  • Отсутствие водородных заправочных станций делает водородные автомобили неконкурентоспособными по сравнению с обычными автомобилями.
  • Не решён вопрос о хранении. На сегодняшний день предлагается хранить в сжиженном виде либо под высоким давлением, но исследования продолжаются.

Водород как горючее

Первым делом хочется понять, что собой представляет двигатель на водороде. А для этого нам необходимо изучить сам водород как эффективный источник энергии, то есть альтернатива привычному нам топливу.

Каждый прекрасно знает, что в обычном двигателе с системой внутреннего сгорания, который работает на бензине, происходит смешивание топлива с воздухом. Затем эта смесь поступает внутрь цилиндров, где и сгорает. Это создаёт энергию для перемещения поршней, что и способствует в итоге движению ТС.

У водорода есть свои нюансы, которые проявляются в следующем:

  • когда сжигается смесь с использованием водорода, на выходе получается только обычный водяной пар;
  • на воспламенение водорода уходит меньше времени, чем в случае с дизельным или традиционным бензиновым топливом;
  • детонационная устойчивость вещества способствует увеличению степени сжатия;
  • показатели теплоотдачи состава превосходят топливовоздушную смесь на 250%;
  • водород является летучим газом, из-за чего он может проникать в малейшие полости и зазоры;
  • лишь некоторые металлы способны справиться с воздействием воспламеняющегося водорода;
  • такое топливо можно хранить в жидком или сжатом агрегатном состоянии;
  • если ёмкость получает пробой или небольшую трещину, всё топливо испаряется довольно быстро;
  • чтобы вступить в реакцию с кислородом, нижний уровень газа составляет 4%;
  • последняя особенность позволяет настраивать необходимые оптимальные режимы для двигателя за счёт дозировки консистенции.

Если принимать во внимание все рассмотренные особенности, можно с уверенностью сказать, что вариант с использованием чистого водорода в обычном ДВС невозможен. Чтобы добиться желаемого, необходимо обязательно внести некоторые изменения в конструкцию, а также установить дополнительное оборудование

В чём опасность такого топлива

Водород позиционируется как взрывоопасное вещество. Именно это можно справедливо считать главной опасностью и проблемой всей технологии водородных моторов.

Сочетаясь с окислителем, в качестве которого выступает кислород, увеличивается риск воспламенения, и также возникает угроза взрывов. Исследования показатели, что на воспламенение водорода уходит около десятой доли энергии, требуемой при воспламенении топливовоздушной смеси. Фактически можно обойтись небольшой статической искрой, дабы водород вспыхнул.

Есть ещё одна опасность. Газ невидимый, и даже в процессе горения его практически незаметно. Невидимость огня усложняет возможность бороться с ним.

Нельзя забывать об опасности вещества для самого человека. Находясь в зоне с повышенной концентрацией газа в воздухе, может наступить удушье. А распознать наличие вещества крайне проблематично. Объясняется это отсутствием запаха и цвета. То есть человеческий газ не способен его разглядеть, а нос не может разнюхать.

В качестве последнего аргумента в пользу того, что водород действительно опасен, выступает факт его очень низкой температуры в случае нахождения в сжиженном состоянии. Контакт с таким веществом способен спровоцировать обморожение.

Безопасность установки

Многие умельцы размещают пластины в пластиковых ёмкостях. Не стоит экономить на этом. Нужен бак из нержавеющего металла. Если его нет, можно использовать конструкцию с пластинами открытого типа. В последнем случае необходимо применять качественный изолятор тока и воды для надёжной работы реактора.

Известно, что температура горения водорода составляет 2800. Это самый взрывоопасный газ в природе. Газ Брауна – не что иное, как «гремучая» смесь водорода. Поэтому водородные генераторы на автомобильном транспорте требуют качественной сборки всех узлов системы и наличия датчиков для слежения за течением процесса.

Датчик температуры рабочей жидкости, давления и амперметр не будут лишними в конструкции установки

Особое внимание стоит уделить гидрозатвору на выходе из реактора. Он жизненно необходим. Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор

Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор.

Водородный генератор для отопления жилых и производственных помещений, работающий на тех же принципах, отличается в несколько раз большей производительностью реактора. В таких установках отсутствие гидрозатвора представляет смертельную опасность. Водородные генераторы на автомобилях в целях обеспечения безопасной и надёжной работы системы также рекомендуется оборудовать таким обратным клапаном.

Водородный двигатель своими руками

Генератор

Чтобы создать эффективный водородный двигатель для автомобиля своими руками, нужно начать с генератора. Самый простой самодельный генератор — это герметичная ёмкость с жидкостью, в которую погружаются электроды. Для такого устройства достаточно источника питания в 12 В.

Штуцер устанавливается на крышке конструкции. Он отводит смесь водорода с кислородом. Собственно, это и есть основа генератора для водородного двигателя, которая подключается к ДВС.

Чтобы создать полноценную систему также понадобится дополнительный накопитель и аккумулятор. В качестве корпуса лучше всего использовать водопроводный фильтр или же можно купить специальную установку. В последней применяются цилиндрические электроды повышенной производительности.

Как видите, выделить нужный газ для реакции не так-то уж и сложно. Намного сложнее произвести его в нужном для водородного двигателя количестве. Чтоб повысить эффективность необходимо использовать электроды из меди. В крайнем случае подойдёт и нержавейка.

В ходе реакции ток должен подаваться с разной силой. Поэтому без электронного блока не обойтись. К тому же в резервуаре всегда должно быть определённое количество воды, чтобы реакция проходила в нормальных условиях. Система автоматической подпитки в водородном двигателе решает эту проблему. Интенсивность электролиза обеспечивает достаточное количество соли.

Чтобы сделать воду для водородного двигателя необходимо взять 10 литров жидкости и добавить столовую ложку гидроксида.

Устройство водородного двигателя

В первую очередь нужно позаботиться о дополнительных резервуарах и трубопроводе. Водородный двигатель нуждается в датчике уровня воды, который устанавливается в середине крышки. Это предотвратит ложное срабатывание при движении вверх-вниз. Именно он будет давать команду системе автоматической подпитки, когда это понадобится.

Особую роль играет датчик давления. Он включается на показателе в 40 psi. Как только внутреннее давление достигнет показателя в 45 psi, подкачка отключается. При превышении 50 psi сработает предохранитель.

Предохранитель водородного двигателя должен состоять из двух частей: вентиля аварийного сброса и разрывного диска. Разрывной диск активируется, когда давление достигает 60 psi, не нанося никакого вреда системе.

Для отвода тепла нужно использовать самую холодную свечу. Не подходят свечи с платиновыми наконечниками. Платина — отличный катализатор для реакции водорода и кислорода.

Электрическая часть

Важную роль в электрической схеме водородного двигателя играет таймер 555. Он выполняет роль импульсного генератора. Мало того, с его помощью можно регулировать частоту и ширину импульса.

В плате водородного двигателя должно быть два импульсных таймера 555. При этом первый должен иметь конденсаторы большей ёмкости. Выход с ноги 3 поступает на второй генератор. Он его собственно и включает.

Третий выход второго таймера импульсного водородного генератора подключается к резисторам на 220 и 820 Ом. Транзистор усиливает ток до нужной величины. За его защиту отвечает диод 1N4007. Это обеспечивает нормальную работу всей системы.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
СТО БрикетСервис
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: